1.a) $\Delta c_{C}=-0,1 \times 40=-4 \in(-\infty, 25]$ (SI from Solver output). Thus, the OS does not change but the profit change is: $\Delta \mathrm{Z}=\Delta c_{C} \times x_{C}=-4 \times 20=-80$, that is, decreases by $80 \mathrm{~m} . \mathrm{u}$.
1.b) $\Delta b_{1}=-30 \in[-140,60]$ (SI from Solver output). Thus, $\Delta Z=\Delta b_{1} y_{1}=-30 \times 15=-450$. NewZ $=90 \times 10+70 \times 20+20 \times 40-450=2650 \mathrm{~m}$. u. Decreases by $450 \mathrm{~m} . \mathrm{u}$. comparing with the initial.
1.c) As $x_{1}=|700-240|>0$ there is a leftover of $180 \mathrm{~m}^{3}$ of oven capacity that could be make available for other products.
2. The Prim algorithm ensures that an optimal solution is achieved no matter the initial vertex that is selected. So there is no effect on the value.
3.a) $x_{i j}=$ no. boxes that should be send every week from warehouse $\mathrm{Ai}(i=1,2)$ to the supermarket Sj $(j=1,2,3)$. The problem is unbalanced, so the total supply $>$ total demand.

$$
\begin{gathered}
\min Z=5 x_{11}+2 x_{12}+9 x_{13}+2 x_{21}+4 x_{22}+5 x_{23} \\
\text { s.t. }:\left\{\begin{array}{c}
x_{11}+x_{12}+x_{13} \leq 1000 \\
x_{21}+x_{22}+x_{23} \leq 800 \\
x_{11}+x_{21}=900 \\
x_{12}+x_{22}=300 \\
x_{13}+x_{23}=400 \\
x_{i j} \geq 0, i=1,2 ; j=1,2,3
\end{array}\right.
\end{gathered}
$$

3.b) No change is needed as all demands and supplies are integer numbers. There is property that ensures integrality of the solution in that conditions.
3.c) Let: $i=3$ be the index associated to warehouse A3; $y=\left\{\begin{array}{cc}1 & \text { if A1 and A2 are used } \\ 0 \text { if A3 is used }\end{array} ; Z\right.$ and $Z 1$ the OF of the original problem and new problem, respectively. Model:

$$
\begin{array}{r}
\min Z 1=Z+0,5\left(x_{31}+x_{32}+x_{33}\right)+5000(1-y) \\
\text { s.t. }\left\{\begin{array}{c}
x_{11}+x_{12}+x_{13} \leq 1000 y \\
x_{21}+x_{22}+x_{23} \leq 800 y \\
x_{31}+x_{32}+x_{33} \leq 2000(1-y) \\
x_{11}+x_{21}+x_{31}=900 \\
x_{12}+x_{22}+x_{32}=300 \\
x_{13}+x_{23}+x_{33}=400 \\
x_{i j} \geq 0, \quad i, j=1,2,3 \\
y \in\{0,1\}
\end{array}\right.
\end{array}
$$

